Какая кристаллическая решетка у алмаза и в чем ее уникальность

Кристаллической решеткой алмаза ученые заинтересовались давно. Благодаря ее характеристикам, камень имеет особые свойства и ценность. Существуют аллотропные модификации, используемые в промышленности, электронике, медицине, космонавтике, авиации. В настоящее время развивается отрасль по созданию искусственных алмазов, но она требует больших затрат.

Кристаллическая решетка алмаза

Строение кристалла и способ образования

Камень алмаз – кубическая аллотропная форма углерода, шестого элемента таблицы Менделеева. Образуется после сверхбыстрого охлаждения под действием сильного давления. Добывается в кимберлитовых трубках – вертикальных образованиях, возникших при прорыве магмы сквозь кору земли.

Под фразой «кристаллическая решетка алмаза» понимают пространственное расположение и соединения атомов углерода, обусловливающие твердость минерала.

По сути алмаз – это модификация углерода.

Бриллиант

К какому типу относится кристаллическая решетка алмаза

Минерал имеет атомную кристаллическую решетку, т. е. в узлах расположены атомы углероды.

Особенности строения кристаллической решетки алмаза обусловливают его прочность, т. к. каждый атом находится в центре тетраэдра (треугольная или трехгранная пирамида) и связан ковалентными связями. При этом каждый атом плотно связан с четырьмя соседними атомами.

Минерал плохо или практически совсем не проводит электрический ток (диэлектрик). Это связано с тем, что между атомами одинаковое расстояние и нет свободных электронов.

Для алмаза характерна кубическая сингония, т. е. элементарная ячейка представлена в форме куба.

Ячейка в форме куба

Строение кристаллической решетки алмаза:

  • по одному атому углерода – на вершинах куба;
  • по одному атому – в каждой грани;
  • четыре атома – внутри куба.

Атомы, расположенные в центре граней – общие для двух ячеек. Атомы, расположенные на вершинах – общие для восьми ячеек. Между собой они соединены наиболее прочным подвидом ковалентной связи – сигма-связью.

Всего химики выделяют 4 типа связи атомов между собой:

  • ионная;
  • металлическая;
  • водородная;
  • ковалентная.

Последний тип связи, формирующий кристаллическую решетку у алмаза, считается самым прочным.

Не все алмазы состоят исключительно из углерода. Иногда в составе встречаются посторонние примеси (кальций, алюминий, бор, магний, кремний, гранит, газы). Если примеси расположены поверхностно, то их можно удалить при огранке. Если же внутри камня, то такие алмазы не представляют ювелирной ценности и используются в промышленности.

Пример кристаллической решетки камня в видео:

Физические и химические свойства

Химическая формула минерала – C. Кристалл хорошо проводит тепло, но не проводит (или слабо проводит) электрический ток. Имеет хорошие преломляющие и отражающие свойства.

Плавится при температуре свыше 3700 градусов. Горит в сочетании с кислородом при температуре более 721 градуса. Устойчив к кислотам и щелочам.

Физические свойства:

  1. Цвет: бесцветный, прозрачный. Возможны оттенки голубого, желтого, синего, розового, красного, бурого, черного.
  2. Форма: кристалл с разным количеством граней.
  3. Блеск: сильный алмазный.
  4. Плотность: 3,5 г/см3.
  5. Твердость: абсолютная, 10 баллов. Но при этом камень очень хрупкий.
  6. Спайность: средняя.
  7. Электропроводность: слабая или отсутствует.
  8. Люминесцирует при ультрафиолете.
  9. Под действием рентгеновского излучения снижается прочность связей.

Аллотропные модификации

Некоторые другие химические элементы имеют схожую с алмазом структуру, но несколько отличную молекулярную кристаллическую решетку. Различие – в расположении атомов.

У алмаза атомы углерода располагаются близко друг другу. А у других элементов с большей атомной массой – расстояние между атомами больше, что снижает их прочность.

Из аллотропных модификаций известны:

  1. Лонсдейлиты – недостаточно изучены, добываются из метеоритов или создаются искусственно, имеют гексагональную кристаллическую решетку.
  2. Графит – имеет похожее строение, но отличается пи-связями и наличием свободных электронов (гексагональная кристаллическая решетка).
  3. Уголь – используется как сырье для получения тепла.
  4. Карбин – мелкие черные кристаллы в форме порошка, искусственно созданные.
  5. Фуллерены – кристаллическая решетка выглядит в виде мяча, собранного из восьмиугольников, искусственно созданные.
  6. Углеродные нанотрубки – используются как каркас к наноизделиям.

Аллотропные модификации способны к трансформации: под действием температуры 1800 градусов они преобразуются в графит.

Дополнительно смотрите видеоматериал об аллотропных формах углерода — алмазе и графите:

Способы применения вещества

Обработанные и ограненные камни высокого качества – бриллианты с идеальной кристаллической решеткой и составом (без примесей и дефектов) – используют для производства ювелирных украшений. Это наиболее прибыльная сфера применения минерала.

Дефектные камни идут на другие нужды:

  • производство подшипников, сверл;
  • использование в электронике и телекоммуникациях;
  • изготовление механизмов из алмазного порошка;
  • обрамление шлифовочных кругов;
  • создание оптических линз;
  • использование в качестве абразивов;
  • создание квантовых компьютеров;
  • применение в ядерной энергетике;
  • изготовление медицинского инструментария.

Получение искусственных минералов

В настоящее время разработаны методики получения алмаза из графита.

По HPHT методу, формирование искусственного камня достигается воздействием 3000-градусной температуры при давлении более 1000 Па и добавлением металлов. Это приводит к изменению ковалентных связей в кристаллической решетке и образованию пористых мутных камней.

Получить небольшие, но геометрически идеальные и прозрачные самоцветы, можно с помощью применения ударной волны (метод взрывного синтеза).

Но считается, что лучший способ получения искусственных самоцветов – это выращивание при температуре 1500 градусов. Но это затратный метод, как и создание алмазов с помощью ультразвука. Поэтому принято получать камни из паров метана. Метод основан на пленочном осаждении графита.

Технологии неуклонно развиваются, и возможно в скором будущем, ученые научатся синтезировать искусственные алмазы при минимальных затратах.

Может быть, вам известны еще какие-то особенности строения или получения алмазов? Поделитесь своими знаниями в комментариях. Делайте репост в соцсети.

Ссылка на основную публикацию
Adblock
detector